

The dynamics of extra-solar planets

Hanno Rein @ Franklin Institute, November 2011

Planet formation

Planet formation

Credit: NASA/JPL-Caltech/T. Pyle (SSC)

Planet Migration

Planet Migration

Planets interact gravitationally with the disc, exchange energy and angular momentum, change their orbits

Planet Migration - Type I

- Low mass planets, Earth, Mars, Venus, (Saturn)
- Not massive enough to open gap in disc
- Migration rate is fast
- Details are very complicated and not completely understood yet
- Strong dependence on gradients and thermodynamics

Planet Migration - Type II

- Massive planets, (Saturn), Jupiter, and above
- Planets are so big that they strongly perturb the disc and open a gap
- That changes the migration rate, slows it down
- Planets follow the evolution of the disc

Planet Migration - Type III

- The extreme case
- Massive planets, Jupiter and above
- Massive proto-planetary disc
- Planet tries to open a gap, but can't do it fast enough
- Planet migrates inwards very quickly

Moonlets in Saturn's Rings

Cassini spacecraft

Credit: JPL/Gordon Morrison

The far side of Saturn

NASA/JPL/Space Science Institute

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006

Random walk

REBOUND code, Rein & Papaloizou 2010, Crida et al 2010

Orbital Resonances

2:1 Mean Motion Resonance

Resonances in the Solar System

Resonances in the Solar System

Extra-solar planets: Gliese 876

Extra-solar planets: Gliese 876

Visual Exoplanet Catalogue

4:2:1 Laplace resonance in Gliese 876

Credit: oklo.org

The formation of Gliese 876

- Resonance structure is key to understanding the formation
- Dissipative processes lead to resonance capture
- Indirect evidence for planet-disc interaction

$$P_1/P_2 = 3.754 \rightarrow P_1/P_2 = 2.335 \rightarrow P_1/P_2 = 2.000$$

Extra-solar planets: HD 45364

Extra-solar planets: HD45364

Correia et al 2009

Extra-solar planets: HD45364

Visual Exoplanet Catalogue

Formation scenario for HD45364

• Two migrating planets but an infinite number of resonances

- Migration speed is crucial
- Different migration types give different migration speeds

Rein, Papaloizou & Kley 2010

Formation scenario for HD45364

Massive disc

- Short, rapid Type III migration
- Passage of 2:1 resonance
- Capture into 3:2 resonance

Thick disc

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics

Rein, Papaloizou & Kley 2010

Formation scenario leads to a better 'fit'

Rein, Papaloizou & Kley 2010

HD200964 The impossible system?

Extrasolar planets: HD200964

Visual Exoplanet Catalogue

Radial velocity curve of HD200964

• Two massive planets I.8 M_{Jup} and 0.9 M_{Jup}

- Period ratio either 3:2 or 4:3
- Another similar system, to be announced soon
- How common is 4:3?

• Formation?

Plot by Matthew Payne

Outcome for HD200964

Credit: Gemini Observatory/Lynette Cook

Migration does not work for HD200964

- Planets are captured in mean motion resonances
- But not in the observed 4:3 resonance
- Massive planets capture in lower order resonances first: 2:1, 3:2
- 4:3 resonance is very tight
- Probability of planet-planet scattering high
- Ejection of planets from the system

Solutions for HD200964

- In situ formation?
- Main accretion while in 4:3 resonance?
- A third planet?
- Observers screwed up?
- Planet planet scattering?

Planet-planet scattering

Simulation Time: 01.5 years

Simulation: Eric Ford (UF)

Conclusions

Planet migration

Planets are formed in a disc around young stars Planets interact with the disc via gravity This changes the orbit of the planets over long time-scales

Resonances

A resonance in a multi-planetary system exists when the period of one planet is a multiple of another planet Many systems are in resonances, in the Solar System and beyond Resonances are formed when dissipative forces are present, such as planet migration

This allows us to study the unobservable planet formation phase

Moonlets in Saturn's rings

Small scale version of the planet forming disc Dynamical evolution can be directly observed with the Cassini spacecraft Evolution is most likely dominated by random-walk